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Abstract. In this paper a new factorization tech-
nique for computation of inverse of mass matrix,
M:", and the operational space mass matrix, A, as
arisingm ‘implementation of the operational space
contral scheme, is presented. This techrqiue re-
suits in Schur Complement factorization both
M-1 and A and subsequently new O(N) algorithms
for their computation. These O(N) algorithms are
highly -éticient for parallel computation. To our
know e?[ﬁe" they repesent the first algorithms that
can befil ly paralleizeq resultingn both time- and
processor-optimal &?ral el algorithms. Using these
algorithms, the O3C scheme can be implemented
with an optima efficiency in both serial and paral-
lel environment. However, in addition-to computa-
tnﬁnql g{fﬁ_cnengl{,_ these algorithms pro¥1des a deeper
cal insi into the structure of, compugatio

&h‘.’?h can beg etxppoiteJ| ?or a better designpo t
space control schemes.
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I. Introduction

_ Consideration of dynamics is essential in the
design, analysis, and control of robot manipulator
systems. Most of the P‘eposed approaches to dy-
namic control are basedon the joint-space dynamic
models. However, task specification for motion and
contact forces, dynamics, and force sensing feed-
back are closely linked to the End-Effecter (EE),
i.e, they are defined in the operational space (the
Cartesian task space) of the robot manipulators.
Thus, the dynamic behavior of the EE is one of
the most significant characteristics in evauating the
performance of robot manipulator systems [1]. The
EE dynamic modeling and control is also of par-
ticular importance for tasks that involve combined
motion and contact forces of the EE.

To alow the description, analysis, and control
of manipulator systems with respect to the dynamic
characteristics of their EEs, Khatib [1,2] has sug-
ested the Operational Space formulation. This
formulation enables the description of both dynam-
1c8 and control strategies at the EE level. How-
ever, the Operational Space Control (OSC) scheme
is sigiificantly more computation-intensive that the
joint-space ‘dynamic control strategies. The joint-

ace control schemes require the computation of
tle inverse dynamics of the manipulator at the joint
levél, Which ‘can be efficiently accomphshed by using

the O(N) recursive Newton-Euler (N-E) formula-
tion [3]. The OSC scheme, in addition to the inverse
dynamics, also requirea the computation of the in-
verse of Joint-Space Mass Matrix, At-1, which cor-
responds to the solution of forward dynamics prob-
lem, and the Operational Space Mass Matrix, A.

In [4] a recursive O(N) algorithm for computa-
tion of A is developed. A recursive O(N) algorithm
for computation of A~! is presented in [5]. Once
A1 (A) is obtained then A (A~?!) can be computed
by inverting a 6 x 6 matrix with a coat of O(l).
The O(N) agorithms in [4,5] along with the O(N)
algorithms for forward dynamics [6,7] can be used
as a set of optimal seria agorithms for implemen-
tation of the OSC scheme. However,. in order to
meet the real- time constraints m the implementa-
tion, further significant’ Improvement’ m the compu-
tational efficiency 18 needed. It 1s clear that, given
the relative maturity of the serial algorithms, any
such ‘Improvement ‘'m the computational efficienc
can be onlyachieved through® explditéation of para I-
lelism in the computation.

However, there seems to be no report on the
development of efficient parallel algorithms for com-
putation of A and/or A=%. The O(N) agorithms in
[4,5] result in a set of nonlinear recurrences which
are similar to those arising in the O(N) algorithms
[6,7] for forward dynamics problem. An extensive
analysis of efficiency of these recurrences for par-
allel computation is presented in [8,9] wherein it
has been shown that they are strictly sequential,
that 18, regardless of the number of processors em-
ployed, their computation can be speeded up only
by a small constant factor. As a result, the O(N)
algorithms in [4,5] are aso strictly sequential and
cannot be efficiently parallelized.

In this paper, starting with a recently devel-
oped factorization of M-1 in form of Schur Com-
plement, we derive new Schur Complement factor-
ization for A™' and A. These factorization result in
novel algorithms for implementation of OSC scheme
with the following advantages over the existing al-



gorithms:

1. Optimal Serial Efficiency: They have an
optimal complexity of O(N) for a sequential
implementation. More importantly, they are
more efficient (in terms of number of opera-
tions) than the previous algorithm since they
exploit a larger degree of synerg;ism between
the computation of M-l and A~ or A.

2. 0 pimal Parallel Efficiency: They can be
fully parallelized leading to time lower bound
of O(Log N), by using an optimal number of
O(N) processors. In addition to such a the-
oretical significance, they are aso highﬁr eif-
cient for practical Implementation on” MIMD
parallel architectures.

3. Deeper Physical Insight: The factorizations
also provide a deeper P ysicalinsight mto the
structure of computation. This property can
be further exploited to gain a better under-
standing in the design of control schemes.

_ In this paper, due to the lack of space, we
mainly concentrate on the mathematical derivation
of the algorithms and a brief analysis of their effi-
ciency for serid and parallel conp utation. "This pa-
per is organized as follows. In §11, the OSC scheme
18 briefly” reviewed and its computational complex-
ity is analyzed. Notation and some preliminaries
are presented in §III. In §IV, Schur Complement
factorization of M-l is reviewed. Schur Comple-
ment factorization of A? and A are derived in §V.
The serial and paralel efficiency of the algorithms
are briefly discussed in §VI. Finally, some conclud-
ing remarks are made in §VII.

‘1. Operational Space Dynamic For-
mulation
A. Formulation

In this section we breifly review the operational
space dynamic formulation. More detailed discus-
sion can be found in [1,2]. The manipulator joint-
space dynamics is given by

M@+C+G=T 1)

where G(Q) and C(Q, Q) are the gravitional and
coriolis/centri fugal forces, respectively. The opera-

tional space dynamics is given by [1,2]
AVN41 +C+ G = Fnyy 2

where AeR®%S is the a%p:mtiona»l Space Maas Ma-
trix. The terms G adC are the gravitional and
coriolis/centrifugal forces described at the EE level.
The spatial force, velocity, and acceleration of the
EE are related to the joint forces, velocities, and
accelerations as follows:

I'=J'Fny (€©)
VN+1 = JQ (4)
VN+1=JQ+jQ (5)

Equation (1) can be written as
@+ M-Y(C+G)=M"'T 6)

Premultiplying Eq. (6) by J (assuming J is non-
singular), we get

JO+ gM Y(C+G) =JMIT  (7)
Substituting Egs. (3) and (5) into Eq. (7) gives

N1+ IM™YC+ G) = TQ = IM ' T'Frnp

(IM I Wngri- (IMITYH)!

(IM™C +G) - IQ) = Fnn ®)

Comparing Eq. (8) with Eqg. (2), and distinguish-
ing bet ween velocit Ty-dependent and non velocity-
dependent terms, it follows that

Az(JM-lJt)-l = A—1=JM—1J1 (9)

C=AIMC-FQ) (o)

G=AIM™ G (11)

Equations (9)-(1 1) describe the relationships be-

tween the operational space and Joint space quan-
tities. A decoupled and linearized EE dynamics of

the form Vn+1 =u can be then obtained by a feed-
back linearization scheme given by [1]

Fnp=Au+IMYC +G) - JQ) (12

I‘ = J‘FN+1 (13)

B. Computational Complexity Analysis

The agorithms presented in this paper can be
used for the evaluation of Eqs. (9)-(11). However,
such an evaluation is more suitable for dynamic
analysis than control. In the fdlfowing, we concen-
trate on the efficient implementation” of controller
given by Egs. (12)-(13).



The computation of the nonlinear term (C+G)
can be achieved by computing the N-E formula-
tion while setting joint accelerations to zero, i.e.,

with Q = O. There have been several reports on
the development of the numerical methods for com-
putation of the matrix J (see, for example, [13]).
However, only the explicit computation of the vec-
tor J@ rather than the matrix J is needed. In
this sense, based on its physica interpretation, the
vector J@Q can be obtained with a small cost as a
by-product of computation of the term (C+G). To
see this, note that if in Eq. (5) the vector Q is set
the zero then the resulting vector V+1= JQ rep-
resents the EE spatial _acceleration due to the joint
velocities. Therefore,if the forward recur. won 1n

the N-E formulafion 1s sligatly modified to compute
t.he spatial acceleration of the EE then, by setting

Q = 0, both the terms (C+G) and Vi, can be
computed. In fact, as is shown in [12], even if the
matrix J is explicitly computed, then its multipli-
cation by the vector %r&sults in a slightly modified
forward recursion of the N-E formulation. As a re-
suit, by using the N-E formulation the Igerlal com-
putation of the vectors (C+G) and V41 can be

performed with a cost O(N). As is shown in{[mﬁ],
the computation of the N-E formulation can befully
parallelized and performed in a time of O(Log N)
by using O(N) processors.

For an efficient implementation of Eqg. (12) the
operator application of M-1, i.e., its multiplica-
tion bya vector which is equivalent to the solu-
tion o’ forward dynamics lem, rather than its
expicit computation1s needed. By using the algo-
rithm in this paper, such an operator application
can be performed in O(N), in a seria fashion, and
in O(Log N) with O(N) processors in a fully paral-
lel fashion. Note also, that the explicit computation
of J1s not needed since the mu tiplication of vec-
tor by J, in Eq. (12), or J*, in Eqg. (13) can be
»erformed in a recursive fashion involvig simple
imear recurrences. These recurrences can be com-
puted with a cost of O(N) in a serial fashion and
with a cost of O(Log N) by using O(N) processors,
in a parallel fashion.

As will be shown, our agorithms alow O(N)
serial and O(Log N) with O(N) processors parallel
computation of A. This result demonstrates that
the scheme can be implemented with an opti-
mal serial and, particularly, paralel efficiency.

I11. Notation and Preliminaries
A. Spatial and Global Notation

. In the following, we use spatial and global nota-
tion which allow a compact representation of deriva-
tion of various. factorization. For the sake of” sum-
plicity, only Joints with one revolute DOF are con-
sidered here. However, the results can be extended

to the joints with different and/or more DOFs.

With argovector V, a matrix VeR3*3 can be
associated w hose representation in any frame is a

skew symmetric matrix:

[0 -vov,
V = Ve 0 -V
-V, V. 0

where V¢, V;, and V; are the components of V in the
frame _considered. The matrix V has the properties
that V! = -V and W2 = Vix V3 ie, it is a

vector cross-product operator. A matrix VeR®%¢
associated to the vector Vs also defined as

vv and VA {(f_‘;-&-

where here (and through the rest of the paper) U
and O stand for unit and zero matrices of ap ropri-
ate size. The spatial velocities of two rigid i con-
nected points A and B are related as

1

Va= P} gVs

where P4 p denotes the position vector from B to
A. The matrix Pa,s has the properties as

PapPpc = Pac and P;,la = Ppa (14)

The spatial forces acting at two rigidly connected
points A and B are related:

F s — f)A,BFA

If the linear and angular velocities of point A are
zero then . PO
Va=Pi5VB

The spatial inertia of link ¢ about point j is denoted
by Iij. The spatial inertia of link i about its center
of mass is designated as fi,ci- The spatial inertia of
link i about point O, (denoted aa li) is obtained aa

I; = S'.'I.',c,'g,! (15)

Equation (15) represents the parallel azis theo-
rem for propagation of spatial inertia.

A bidiagonal block matrix PeREN¥SN s de-
fined as

AU i
—Pn_1 U 0
—~Pn-2 U
P=1 o 0
a 0 —}51 u

Note that, according to our notation, Pis1, = 5.
B. Operator Expression of Jacobian Matrix



Following the treatment in [5], a factorization
of Jacobian matrix by using our notation is derived
as follows. The velocity propagation for a serial
chain of rigid bodies is given by (Fig. 1)

Vi — P} \Vio1 = HiQ; (16)

which, byusing the matrix P, can be expressed in
a global form as

PV =2@ =V = (P)'HQ  (17)

The EE spatid velocity, V,,, is obtained by writ-
ing Eq. (16) fori =N 4 1 as

Vst — PYVn =02 Vvgy = PRV (18)

Defining B =[P}, 0,0, ....0]eR®*N from Egs.
(17)-(18), we get
V41 = BY = B(P')'HQ (19)

Comparing Egs. (4) and (19), an operator expres-
sion (or, a factorization) of Jacobian matrix is then

given by
J = B(PY)'H (20)
C. Equations of Motion

The equations of motion given by Eg. (1) can
be written as

MQ =1 - C(QIQ) - G(Q)1 or

MQ=Fr = Q=M'Fr (21)

where Fr = Col{Fri} =T'-C(Q, @) — G(Q) eRN*!
represents the acceleration-dependent component of
the control force. From Eq. (21) the multi body sys-

tem can be assumed as as[ystem rest which upon
application of the contro Iforce /T accelerates in
space. The propa ftion of accelerations and forces
among the hnks ol serial chain are then given by

Vi = P Viy + HiQs (22)

F; = LV;+ BiFiyy (23)

which represent the simplified N-E agorithm (ex-
cluding the nonlinear terms) for the serial chain.

IV. Schur Complement Factorization

of M-?

A. Interbody Force Decomposition Strategy
In this section we briefly review a recently de-

veloped factorization of M 1 [9,10] to establish the

basis for developing a similar factorization for Al
and A. This new factorization is based on a rather
unconventional decomposition of interbody force of

the form:
F.= HiFri4+ W, Fs; (24)

where F.? is the constraint force. The%re'ection
matrices #i and W, are taken to satisfy t 1& follow-
ing orthogonality conditions:

Hi{H; =U, W/W; = U, WiH, = O (25)

HH!+ W,W}! = U (26)

Note that the projection matrices are taken to be
block diagonal in the rotational and translational
coordinates. Thi$ ‘implies that there 1s no coupling
between the degrees of freedom, thereby precluding
dimensional inconsistency (see [9] for a more de
tailed discussion.) For a joint ¢ with multiple DOFs,

say li < 6 DOFs, HieR8*! and W;eR6*(6-1),

The decomposition in Eq. (24) naturaly leads
to the explicit computation of the constraint forces.
In fact, researchers have often ag ued that since the
constraint forces are nonworking forces their explicit
evaluation, which leads to the computational inef-
ficiency, should be avoided. Interestingly, however,
the decomposition in Eq. (24) leads to new fac-
torizations of M-I, A-l, and A~! and subsequent
optimal serial and parallel agorithms.

B. Factorization of M-I

In [9,10], it has been shown that the force de-
composition in Eq. (24) leads to a new Schur Com-

plement factorization of M~!. Here, we briefly re-
view this Tactorization since iti1s needed for deriva-
tion of the factorization of A1 and A. To begin,
let lﬁ (t'jefilne fallowing global matrix and vector for
1= O 1:

W £ diag{ Wi}eREV*SN . Fs £ col{ Fg; }eR°N

Equations (22)-(26) can be now written in global

form as . .
PV =HQ (27)
PF =1V (28)
F = HFpr + WFs (29)
H'H=U, WW= U, and W'H = O (30)
HH' + WW! = u (31)

From Egs. (27), (28), and (30) it follows that
V=1I"1pF (32)
WPV = WHQ =0 (33)
and from Eqgs. (32)-(33), we get
W'PII-IPF =0 (34)
Substituting Eqg. (29) into Eqg. (34) yields

W'P'I-'P(HFr + WFs)=0=

35
WP IPWEs = - WP IPHFE, )



From Eqs. (35) and (29) it follows that

F =(H-WW'PI-'PW) W P'I-'PH)Fr
(36)

Multiplying both sides of Eq. (27) by H* and from

Eqg. (30), Q is then computed as

H'HY = H'P'V = Q = H'P'V (37)

Finally, by computing Y from (32) and (36) and
substituting it into (37), we get

Q=M'P'T-'PH - H'P'T"'PW

38
(WP TP W) WP T-1PH) Fr 38)

In comparison with Eq. (21), an operator factoriza-

tion of M-1, in terms of its decomposition into a
set of simpler operators, is given by

M1=C-BA'B (39)

A = wtptz—lpweseSNXSN
B = WPII-IPHeRIN*N
C = H'P' T 1PHRNXN

Note that, d and B are block tridiagonal matrices
and C is a tridiagonal matrix. Also, both A and C
are Symmetric Positive Definite (SPD) [10].

The operator form of M-I given by Eqg. (39)
represents %n interesting mathematical” construct.
If a matrix £1 is defined as

Ly = [g‘t lcf eRENXEN

then M-1 is the Schur Complement of Ain 4. The
structure of matrix £, not onlprgovides edeeper
physical insg ht mto the comptagtion but it also
motivates a afferent and a much simpler approach
for derivation of the factorization of M-I [10,11].
V. Schur Complement Factorization
of A-tand A

A. Schur Complement Factorization of Al

The factorization of M "1 directly results in a
new factorization of A'l. This factorization is de-
rived by substituting the factorization of J, given
by (20), and M-I, given by (39), into (9):

A~ =B(PY I HHIPITIPH - NPT PW
WP I PW) WP T pH)H P

which can be written as
ATH = BT HHYPH(IT - TP

wrp'z-lpw)-! WHPIT-1YYP(HH! yP-1 8t (40)

The key to simplification of this expression is the
fact that, from Eg. (31), we have

HH =U - WW! (41)

By replacing Eq. (41) into Eq. (40) and after some
involved algebraic manipulations, a simple operator
expression of Al is derived as

AT =pIpt - BITIPWWIPITTIP W)Y
wlptz—lﬂt
(42)
This expression can be further simplified since

E' = BITIPW = [PRIZ'WN, 0, . . . . 0)eRS*SN
R X (43)
D =p1-1p' = PRIR Pn (44)
The pardlel axis theorem in Eq. (15) can be aso

used for propagation of the inverse of spatial inertia.
By using Eq. (14), Eq. (44) can be written as

D =((Pn) " (In)(BY ) Y)?

" . -1 g- (45)
= (PnaawINPRyy )™t = TN
that is, D is just the inverse of spatial inertia of link

N about point O,,. The factorization of A=! can
be written in form of Schur Complement as

ATl=p_gta-ig (46)

Note that the matrix A is the same as in Eqg. (39).
If a matrix £2 is defined as

A &
L= [A 5] enemsoxomso

then Al is the Schur Complement of A in L2
B. Schur Complement Factorization of A

Once Al is computed and assuming that its
inverse exists (i.e, A1l is nonsingular), A can be
then obtained by a 6 x 6 matrix inversion. However,
this corresponds to a numerical evaluation of A. In-
terest ingly, it is possible to derive a factorization
of A which alows its direct computation without
any need for computing A'l. This also provides a
deeper physical insight mto the structure as well as
a smple physical “interpretation of matrix A.

The factorization of A is derived by using the
matrix identity
(C-xpy)'=cCc"'-CclX(YC'X-D ') lyc!?
for inverting A=, given by Eq. (46), as

A =p-l-p-lgtg-igp-t (47)



where $ = £D™ '€~ A. This jnversion, in addi-
tion to the nonsingularity of A, also requires that
the matrix & be nonsingular (note that, D is pos-
itive definite and hence P! exists) It should be
mentioned that there are other possible forms of A
which only require the nonsingularity of A-1! [L1].
The above expression of A can be further simplified
by noting that

G=D'=(Iglyy) = Inngr (48)
Also, from Egs. (43) and (45), we get
D-itt =[PRlIN(PY) ' PLIZ'WN,O,.... 0]

RE=DI = [PN,N+1 Whn, O, .., O]CQGXSN
(49)
Note that, from Eg. (49), we have

S=ER'-A (50)

which implies that S is a rank one (in block sense)

modification of matrix .4ie, S differs from A only
in the leading element. The above factorization of
A can be written in form of Schur Complement as

A=G-RTS"'R (51)
If a matrix L3 is defined as

Ls= %S' ZE%(SNHS)X(SN-}G)

then A is the Schur complement of S in L3.

V1. Complexity of Serial and Parallel
Computation of A

A. O(N) Serial Computation

For the sake of space, we only discuss the com-
putation of A by exphcit computation and inversion
of A'l. Note that, similar results can be aso ob-
tained by direct. computation of A from Eq. (51)
and using Eg. (50). However, as will be discussed
below explicit computation of Al rather than A
provides a greater tency in both seria and par-
allel computation.

The most computation-intensive kernel in both
operator application of M1 and computation of

A”is the computation and inversion of matrix A.
The matrix A and its elements are given as

A = Tridiag [Bi, Ai, Bi_)
A=W + B ITANP)Wii= N to 1 (52)
Bi = W 'PWis,i=N-11t01 (53)

From Eqs. (52)-(53) the elements of matrix A can
be computed in O(N) steps. Efficient computation
of matrix A by using optimal frame for projection
of Eqs.(52)-(53) is discussed in [9].

The explicit computation of A"l from Eq. (46)
can be performed in O(N) steps as follows. The
computation of A’& corresponds to solution of the
system

AQ =€ (54)

for Q. This represents the solution of a SPD block
tridiagonal system for six right-hand side vectors

which, by using the block LDL* agorithm, can be
obtained in O(N) steps. Given the sparse structure
of £ (see Eqg. (43)), the computation of £/Q can be
red uced to

0 =£'Q =L (55)

where £l eR6%*and QneR*® are the first elements
oft’ and Q2 (note the ordering of these matrices, e.g.
E' in Eq. (43).) The matrix-matrix multiplication
in Eg. (55) can be performed with a cost of O(l).
The matrix A'l can be then obtained by adding
two 6 x 6 matrices with a cost of O(l). Finaly, A
is obtained by a 6 x 6 matrix inversion, resulting in
an O(N) complexity for the overall computation.

The most computation-intensive part of block
LDL* algorithm is the factorization of the block
tridiagonal matrix since it requires the inversion of
5 x 5 matrices. However, forboth the operator ap-

lication of M 1 and computation of A~! this fac-
orization needs to be performed only once. This
clearly demonstrates the synergism between the op-

erator application of M! and computation of Al
since once this factorization is obtained for operator

application of M-1, the computation of Eq. (54)
can be performed with a much greater efficiency.

B. O(Log N) Parallel Computation

The computation of elements of matrix A from
Eqgs. (52)-(53) is fully decoupled for i = N to 1.
Thus, by using O(N) processors, this computation
as well as required projections can be performed in
0(1) while involving only nearest neighbor commu-
nication among processors [9].

~ The block LDL! algorithm, while higiyl effi-
cient for serial solution of block tridigonal sys-
terns, seems to be strictly sqquential ‘and, in fact,
there is no report on its parallelization. flowever,
the Block Cyclic Reduction (BCR) algorithm [15),
while less competitive for serial computatiag can
be efficiently parallelized. By using the BCR al-
gorithm, the system in Eq. (54) can be solved in
O(Log N) steps with O(N) processors. The com-
putation of Eq. (55) and the final matrix addition
for computation of Al as well as its inversion can
be each performed in O(1) with one processor, i.e,
in a seria fashion. This results in a complexity of
O(Log N) + O(1) for a parallel computation of A
with O(N) processors which indicates a both time-
and processor-optimal parallel agorithm.



It should be emphasized that efficient parallel
solution of block tridiagonal systems is the k{ to an
efficient parallel computation of Schur Complement
factorization of M 1, A'andA.Motivated by
this fact, we have developed a more efficient vari-
ant of the BCR agorithm [21 ,22] which is partic-
ularlysuitable for implementation on coarse grain
MIMD prallel architect ure since it significant [y re-
duces the communication overhead Dy providing a
high degree of overlapping between communication

and computation [16]. However, an even further ef-
ficiency in_paralel implementation of OSC scheme
can be achieved by exploiting the synergismin op-
erator application of M~ and the computation of
A-l. In the operator application of M the mul-
tiplication of .A~! by a vector is needed. This cor-
responds to the solution of a system as:

AX =Y (56)

for some vectors X and Y. Now, (54) and (56) can be
combined and solved as a linear ysster"with seven
right-hand side vectors. This comhination not only
increase the gram size but aso reduces the amount
of communication in the paralel Implemental.lon.

VIIl. Discussion and Conclusion

We presented a new factorization technique for
computation of A~! and A. This technique results
in Schur Complement factorization of both A=! and
A and subsequently new O(N) algorithms for their
computation. These O(N) algorithms are highly

efficient for parallel computation. To our knowl-
edge, they re pesent the first algorithms that can
be fully” pardllelized, resulting m both time- and
processor-optimal &rallel algorithms. Using these
algorithms, the OSC scheme can be implemented
with optimal efficiency in both serid and paralel
environment.

However, in addition to their theoretical signif-
icance, these algorithms are also %hly tefficien’ for
practical implementation on MIMU (s I aFchi-

tectures. We have implemented the parallel O(Log N}

algorithm for computation of forward cynamics of
a serial chain by using the Schur Comp lement fac-
torization of M "1 on a Hypercube architecture [16].
Our results clearly validate the efficiency of this fac-
torization of M "1 for rpracucaarallel implemen-
tation. However, as discussedin§VI.A, one can
expects an_even %ester efficiency in the parale im-
plementation of the OSC scheme.

The manifest of Schur Complement in factor-
ization of M 1, A1 and.A provides a unified frame-
work not only for their computations but also for
their physica interpretations [1 1]. In fact, we strongly
believe that the ph S'lcail'lnsl'il‘t3 provided by these
factorization can to a better understanding
of the control schemes. The exploitation of this

physical insight in the design. of task space control
schemes as well as the practical...real-time,. paral-
lél “implementation of the OSC scheme b _uslfg the
algorithms of this paper will be discu intorth-
coming reports.
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Nomenclature

Number of Degrees-Of-lleedom
(DOF) of the system

Position vector from Oj to Oi,

Pi+1,i ~ Pi

Mass of link i

Second moment of mass of link i
about its center of mass

VN+1, V1 eR8

F = f]. eRS Spatial force of interaction
4 between link i-1 and link i

Fn116R®  External spatial force acting
on the End-Effecter (EE)
EE Spatia velocity and
acceleration, point Ow 4.

First and Second Moment of mass Global Quantities, i, = N to 1

of link i about point O MeRN*N

Position, velocity, and
acceleration of joint i

Applied (control) force on joint i
Angular velocity and acceleration
of link i

Linear velocity and acceleration
of link i, point O;

Force and moment of interaction
between link i-1 and link i
Spatial axis (map matrix) of
joint i, H;eRO%* for a joint

with k DOFS

Spatial Inertia of body i about

JERGXN

‘H = Diag{H;}

I = Diag{I;}eReN*6N
Q = Col{Q;}eR"

Q = Col{Q;}eRN

Q " Col{Q:}eRN

point Oj, Lii* I; r = Col{T:}eR"
I 1’:, s V © Col{V;}eReN
. iV

(t denotes transpose) V. Col{V,]eRoN

Spatial velocity of link i,
point Oj
Spatial acceleration of link i,

F ~ Col{F;}eRsN

point O;

Symmetric Positive Definite

(SPD) mass matrix
Jacobian Matrix
Globa matrix of spatial
axes, HeRSN*"for a
system with 1 DOF joints.
Global matrix of spatial
inertia

Global Vector of joint
positions

Global vector of joint
velocities

Global vector of joint
accelerations

Global vector of applied
joint forces

Globa vector of spatial
velocities

Globa vector of spatial
accelerations

Global vector of spatial
interaction forces

Figure 1. Links, Frames, and Position Vectors
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